
18 The Delphi Magazine Issue 30

Ballet Mechanique
by Julian Bucknall

Recently our esteemed editor,
Chris Frizelle, and I had an

email conversation discussing
what kind of articles I could be writ-
ing for The Delphi Magazine. He
mentioned that, although articles
about databases and visual
widgets and Internet topics are all
very interesting and are covered in
this magazine (extremely well) and
in the Good, Bad and Ugly books on
your local bookstore shelves
(maybe not quite as well), every
magazine under the sun is also
publishing them. What he wanted
and proposed to me was a more
solid, hard core series of articles
for medium to advanced level
programmers. The general theme?
On what we may call “computer
science” topics. In other words, to
assume that you, the programmer-
reader, know about linked lists,
stacks and insertion sorts and
would like to advance and extend
your knowledge on some other
algorithms and structures. Over
the next few articles we shall be
extending your toolset and
mindset with some of the classical
algorithms cast in the Delphi mold.

And, dare I say it, I, your guide on
this quest, shall be doing some

learning of my own at the same
time. Some of the topics we shall be
exploring will be new to me;
although I may have heard of them,
I certainly have never used them or
developed with them before. On
the other hand, other topics we
shall cover will be very familiar to
me and come out of my work at
TurboPower Software and for my
EZDSL data structures library
[check out the bonus\tpower\pub\
misc\funcs folder on your Collection
‘97 CD-ROM, which you have of
course purchased, for a copy. Ed].
To be unfair, I won’t tell you which
is which, so you’ll just have to trust
me!

Let’s get to work then. This arti-
cle is going to be the first in a small
series on hash tables.

On Track
Before you raise your hands in
horror (“What the heck is a hash
table?”), let’s lay some foundations
and get us thinking along the same
lines. I assume you know from
programming in Delphi what a
TStringList is. The concept is
pretty simple: a class that repre-
sents an array of strings and you
can have an object (or a pointer to
a record, or a generic 32-bit value)
associated with each string. If the
TStringList you are using is not in
sorted order, then you will agree
that the only way to find a particu-
lar string (and hence its associated
object) is to start at the beginning
(or end), wander through the list
and compare each string in the list

with the one you want (Listing 1). If
you get through the whole list with-
out finding the string then, by gum,
it ain’t there. If you do find it, then
you have the index of the string
and hence can get at the object.

If there are N strings in the list,
you may find the element you want
straight away (“Hey, it’s at element
0”), or you may find it right at the
end (“Rats, it’s at element N-1”). A
minor bit of probability theory
later and you can calculate that the
expected number of comparisons
you will have to make to find an
existing string is ½N and this is the
same as the number of element
accesses as well. So, for a list of
1024 elements, you will retrieve
and examine 512 elements on
average to find the one you want.

To exaggerate the effect, if you
pretend that each access to an ele-
ment requires reading from a file,
I’m sure that you will agree that
this is not very good.

Ahhh, you say, but a TStringList
can be sorted alphabetically. In
this particular situation, to find a
given string we apply an algorithm
called binary searching. Look at
the element at ½N. Compare its
string to the one we want. If it is
equal, we’ve discovered the ele-
ment we want. If it is greater than
our string then we can immediately
state that the element we want is in
the first half of the list. If it is less
than our string, then we know that
the element we want is in the latter
half of the list. In either case, we
can ignore the other half of the list.
Repeat the same process with the
half list we have and we’ll end up
with a quarter list. Repeat again
and we’ll end up with an eighth list,
and so on. Every time we halve the
number of elements to look
through and so eventually we’re
left with one element that is either
the one we want, or it isn’t. The
standard algorithm is shown in
Listing 2.

This is a slight variation on the
standard binary search algorithm

var
i, Index : integer;
FoundIt : boolean;

...
FoundIt ;= False;
for i := 0 to (MyList.Count - 1) do
if (MyList[i] = StringToFind)
then begin
Index := i;
FoundIt := True;
Break;

end;

➤ Listing 1

var
LeftIndex, RightIndex, MidIndex : integer;
FoundIt : boolean

LeftIndex := 0;
RightIndex := pred(MyList.Count);
FoundIt := false;
while (LeftIndex <= RightIndex) do begin
MidIndex := (LeftIndex + RightIndex) div 2;
if (MyList[MidIndex] = StringToFind) then begin
FoundIt := true;
Break;

end else if (MyList[MidIndex] < StringToFind) then
LeftIndex := MidIndex + 1

else {it's greater than}
RightIndex := MidIndex - 1;

end;

➤ Listing 2

20 The Delphi Magazine Issue 30

which makes use of the Delphi
Break statement and an extra vari-
able to help out a bit. Also, the
algorithm is generally cast as a
repeat..until loop in the litera-
ture, but having used this algo-
rithm in various guises over the
years, I think it makes more sense
as a while loop, especially if the
number of elements is ever likely to
be zero. Anyway, if you trace
through this code on paper, you’ll
come out at the statement after the
loop with either FoundIt set to True
and MidIndex pointing to the ele-
ment that matches the string we
want, or FoundIt will be False. The
algorithm works by bracketing the
element we want with a range
defined by LeftIndex and RightIn-
dex and then gently reducing the
range by half, each time through
the loop. Looking at the code you’ll
notice that there is one access to
an element per loop (at least you
could force this by copying the ele-
ment into a local variable), with
generally two comparisons per
loop.

Since the algorithm reduces the
range by half each time though the
loop (actually a little more than a
half), playing around with some
example numbers you can see that
the number of element accesses
you will have to make is log2N. So
for example when we have 1024
elements, at worst we’ll need to
make 10 accesses and 20 compari-
sons to find the correct element
that matches the string we need to
find. This is more like it! Since the
number of accesses is propor-
tional to log2N, we can see that to
find an element in a sorted set of
1,000,000 strings we’ll need about
20 accesses using a binary search
algorithm, compared with half a
million using a standard sequential
search. Amazing.

Now, of course, we have to do
some work when we add elements
to the list in order to maintain the
sorted order and this would be
much more work than just main-
taining a list in an unsorted or arri-
val sequence. In fact we would
have to try and find the element we
want to add in the list and then add
it at the point we arrive at (in List-
ing 1, if FoundItwas False at the end

of the loop then LeftIndex will hold
the index to insert the new element
at). So we are, in effect, trading off
extra work during the insertion
phase to make the search phase
that much faster.

Blender? Oh Yeah
So is there anything better than
this? Is there some other data
structure and/or algorithm that
will enable us to find a specific ele-
ment in a list of N strings with less
than log2N accesses? Well, yes,
there is, otherwise I wouldn’t be
writing this. The structure we need
is a hash table and the number of
accesses required will generally be
one.

Let us imagine that we have a
magic function that takes in a
string and spits out the index in the
list we require. All we need to do
then is to get that particular ele-
ment in our list and, bingo, we’re
done. When we add a string to the
list we call the same magic function
which will tell us where to put the
string in the list. Is this magic func-
tion too good to be true, or what?
We’ll see.

This magic function is called a
hash. Like many computer terms
hash can either be a noun or a verb,
as we’ll see. As I described above, it
takes in a string, does some kind of
manipulation on that string and
returns a value that can be used as
an index into an array or table (in
our case, between 0 and one less
than the number of elements in the
array). Different strings would
hash to different values, obviously
(it would a pretty silly hash if every
string hashed to the same value for
what would we do then?). We’ll see
that hash functions tend to be
great randomizers: for the better

ones there seems to be no
correlation between the string and
the eventual hash value.

Let’s investigate some examples
of hash functions so that we can
get a ‘feel’ for what’s good and
what’s bad. Mmmm, that of course
presupposes we know the mean-
ing of good and bad when applied
to hash functions! A definition of a
good hash function is one that will
produce a good spread of values
for our particular set of strings. An
amazingly good hash function will
produce a different value for each
string we have; in other words,
there are no two strings in our set
that hash to the same value (ie,
that do not collide, using the hash
table vernacular). A bad hash func-
tion is one that produces a large
number of equal values for our set
of strings (ie, a large number of
collisions).

OK, having said that, here’s my
first hash function (Hash 1): return
the length of the string. Suppose
that we are storing the surnames
of our N friends in our hash table:
is this a good hash for this applica-
tion? Well, I don’t know about you,
but thinking about my friends’ last
names, I have none with a zero (!),
one, two or three character sur-
name, I have several with four or
five or six letters in their last name
and I have absolutely none at all
with more than 12 letters. So I’d
say that this particular hash func-
tion is absolutely appalling. If I had
50 friends the great majority of the
list would be empty and I would
have to try and squeeze 50 names
into less than 10 entries in the list.

So, here’s another: take the first
letter of the name and use its ASCII
value (Hash 2). The merest
moment’s thought would soon

function CalcELFHash(const S : string) : integer;
var
G : longint;
i : integer;

begin
Result := 0;
for i := 1 to length(S) do begin
Result := (Result shl 4) + ord(S[i]);
G := Result and $F0000000;
if (G <> 0) then
Result := Result xor (G shr 24);

Result := Result and (not G);
end;
Result := Result mod ElementCount;

end;

➤ Listing 3

February 1998 The Delphi Magazine 21

dispatch that hash function as
being too bad for words, so we
won’t say any more on the subject.

All right, how about going a little
further with that idea? Let’s treat
the letters in the names as ASCII
values, and adding them all up to
some big value and then taking the
modulus of this result with the
number of elements in the list
(Hash 3)? Recall that X mod N
returns a value between 0 and N-1.
This seems much better, at least
on paper. As an experiment, I
wrote an application that took the
surnames of all the 33 employees
at TurboPower in an old phone list
I had on disk and generated their
hashes for a 50 element table: in
other words I made sure the
hashes generated had values
between 0 and 49.

There were 23 hash values not
generated at all, 21 hash values
generated from one name and 6
from two names. In comparison,
the first hash had 43 values not
generated at all, 3 values from 2
names, 3 from 6 and one from 9; the
second hash had 34 not generated
at all, 5 from 1, 6 from 2, 4 from 3,
and 1 value that was generated
from 4 names. So, this small experi-
ment shows we’re on the right
track. Could we do better?

The fourth hash we shall look at
is the ELF hash (Listing 3), devised
a while ago for UNIX object files
(Hash 4). Here the results didn’t
seem to be much better, despite
the complexity of the algorithm: it
does quite a bit of internal ran-
domization. I found 23 values not
generated at all, 22 values from one
name, 4 from 2 and 1 generated
from 3 names.

None 1 2 3 4 5 6 7 8 9

Hash 1 46 0 3 0 0 0 3 0 0 1

Hash 2 37 5 6 4 1 0 0 0 0 0

Hash 3 32 12 7 1 1 0 0 0 0 0

Hash 4 27 21 3 2 0 0 0 0 0 0

Hash 5 27 20 5 1 0 0 0 0 0 0

Expected 28 18 6 1 0 0 0 0 0 0

➤ Table 1:
Distributions of hash values for various hashes in a 53 element table

Maybe we’re missing some-
thing? One small point to make
(which isn’t obvious from our
experiments) is that a prime
number is usually used for a
divisor because primes tend to
distribute remainders (which is
what we get with the mod operator)
more randomly than non-primes.
So, let’s ensure that our list has a
prime number of elements, say 53.
Rerunning the same test on the
TurboPower phone list gives a
better distribution for the last two
hashes described above, with the
ELF hash being slightly better. But
there are still hash values which
are generated from two or more
names. This is pretty awful for us
since we want a magic hash func-
tion that will generate a different
index for each of our strings so
that when we add string to the list
or table it won’t clash (or collide)
with a string that’s already there.

Just for fun I ran the same experi-
ment with a hash function that just
returned a random value (Hash 5).
Of course this would be com-
pletely useless in practice, but it
serves as a comparison. The
results of the five hash functions
are plotted in Table 1. The way to
read this table is this: let’s take the
column headed ‘2’. This column
shows the number of hash values
that were generated by two strings
in our set. So, for example if we
look down that column at Hash 3,
we see that there were 7 hash
values that were generated from
two different strings in our set.

Hawaiian Chance
Let’s take a little side step into
probability theory. Imagine a

dartboard where the bull’s eye and
double and triple rings don’t exist.
In other words, a circle divided
into 20 equal pie slices. I throw 15
darts at the board. With my dart
throwing ‘skills’, it’ll be pretty
random where these darts stick in.
Now there will be slices on the
board where there won’t be a dart,
there will be slices where there is
one dart and there may be slices
with more than one dart. There
may even be a slice with three
darts.

It can be shown that the
distribution of darts in the board
(the number of slices with no
darts, the number with one, etc)
follows a Poisson distribution. The
Poisson distribution curve is really
a set of discrete points, each point
representing the probabilities of
no events, one event, two events,
and so on. In general, the curve is
humped towards the y-axis, with
the probabilities of 0, 1 and maybe
2 events being significant, and the
probability of x events where x
increases from 3 getting asymp-
totically close to the x-axis. Figure
1 shows a Poisson distribution
with mean 1.

Fascinating, I’m sure, but what
does all this have to do with hash
tables? Well, as I’ve already said
the better hash functions have a
randomizing aspect to them. The
strings we use to generate hash
values are like the darts, and the
hash values are like the slices in
the dartboard. The distribution of
hash values from our set of strings
follows a Poisson distribution. In
Table 1 the row labeled Expected is
the set of expected values accord-
ing to probability theory.

In fact, the expected number of
hash values that will be generated
by x different strings is given by
the formula

Expected Number = N
() ()r N e

x

x r N/

!

/−

where r is the number of strings we
are trying to insert in a list of N ele-
ments. For example, plugging r=33
and N=53 in to this formula, we
expect that there is going to be one
hash value (rounded from 1.4) that
will be generated by 3 different
strings.

22 The Delphi Magazine Issue 30

Crash Dance
The outcome of this little detour is
that no matter how clever we are in
devising a stupendously complex
hash function, there are likely to
be some hash values that are gen-
erated by two or more strings.
And, in turn, that means we will
have to come up with a scheme to
cope with this situation.

When the same hash value is
generated by two or more strings,
it’s known as a collision. For exam-
ple, suppose we add Smith to our
hash table. We calculate that the
hash value for Smith is 42 using our
whizzomatic hash function and so
we put ‘Smith’ and his associated
value into the 42nd element of our
list. If we want to find Smith again,
we calculate the hash (42) and go
and get the 42nd element from our
list. Piece of cake.

Now we want to add Jones to our
hash table. We calculate the hash
for Jones and it also comes out as
42. We go to element 42 of our list
and note that it is already filled
with information for Smith. What
do we do now? Where can we put
Jones and his associated informa-
tion? Obviously we can’t replace
element 42, otherwise we would
never find Smith again.

How How
There are several options open to
us. The simplest is called linear
probing, sometimes known as
progressive overflow). The way
this works is as follows. Continuing
our recent example, we note that
element 42 is taken. We go and
have a look at element 43 instead. If
that is not taken we put Jones
there. If it is taken, we continue this
process with element 44, 45 and so
on (wrapping round at the end of
the table if necessary) until we do
find an empty slot. Now, let’s con-
sider a search for Jones and his
information. We hash Jones to get
42, and go get element 42 from our
list. It’s for Smith, so we reject it
and go and get element 43. It’s for
Jones and we’ve completed our
search. Here’s the table around
that part at this point:

Element 41: <empty>
Element 42: Smith

Element 43: Jones
Element 44: <empty>

What happens if we have to find
the element for Rhys, who isn’t in
our table? We hash Rhys to get 42
(oh no, not again!). We go get ele-
ment 42, it’s Smith. Ignore it and go
get element 43. It’s for Jones.
Ignore it and go get element 44,
which is empty, and from this we
can determine that Rhys is not in
our hash table. Pretty easy, huh?

A couple of notes about linear
probing might be worth mention-
ing here before we continue. The
maximum number of strings we
can insert into a hash table using
this method to resolve collisions is
obviously equal to the number of
items in the hash table. If we have a
table of 53 elements, we can’t add
54 strings to it. Period. Unless we
code a table that dynamically
expands, that is, and we’ll get to
this in a later installment.

The next thing to realize is that
linear probing starts to degenerate
the greater the loading of the table.
Suppose that we’ve added 52
strings to our 53 element hash
table and we’re just about to add
the last one. We could be
extremely unlucky and get a colli-
sion and have to retrieve all 52 ele-
ments and reject them until we
reached the empty slot. In fact
research has shown that if the
hash table is 66% or less full the

average number of accesses for
finding a particular string is 2 or
less. In other words, if our hash
table of 53 elements is filled with
our 33 strings (about 62% full), and
we try and find every single string
we’ve added, we’ll make in the
region of 66 accesses to find all 33
strings. If the hash table were 80%
full, we’d make on average 3
accesses for each string. At 87%
the average rises to 4, at 90% it’s
now 5. So if we’re going to use
linear probing as our collision
solution, it makes sense to keep
our hash tables two thirds or less
full (to put it another way our hash
tables should always be one third
or more empty if they use linear
probing as a collision resolution
mechanism).

Also it doesn’t matter how bad
our hash function is, we’ll still be
able to insert 53 strings into the
table. But at what cost? Imagine
Hash 1 above being used to insert
the TurboPower phone list into a
53-element hash table. You can see
that there will be many, many colli-
sions in trying to populate the
hash table (for example, there will
be nine strings that generate the
same hash value, ie, there will be at
least 8 collisions at one point in the
table). So we do need to use a good
hash function and by doing so we
reduce the number of collisions.

➤ Figure 1

24 The Delphi Magazine Issue 30

By reducing the number of
collisions we improve the effi-
ciency of the hash table; we know
that there will probably be some
collisions, we just need to reduce
the total number.

Another point which hasn’t
really been mentioned before is
that for linear probing to work
well, the hash function must give a
good spread of values. If there is a
‘clumping’ of values around some
particular hash value then any col-
lisions in that clump will cause
long chains of ‘get and reject’
operations in implementing the
linear probe. For example, sup-
pose we’ve added seven strings
and in doing so the hash values
13-19 have all been taken. If we now
add another string and it collides
at 13, then the linear probe will
have to get and reject 7 elements
until it reaches an empty element.
This aspect of hash functions is
extremely hard to predict.

Bananas To The Beat
Having warned you sufficiently
about some of the obvious and not
so obvious problems of linear
probing, there is one more. What
happens if we want to delete a
string from our hash table? Seems
pretty easy at first glance: hash the
string, find the actual element in
the list (maybe doing a couple of
probes in the process) and then
mark that element empty.

Bzzzzt! Let’s illustrate the prob-
lem. Say we have an empty hash
table and we insert Smith, Jones
and Rhys into the table in that
order. They all hash to 42 and
hence the table looks like this in
that region:

Element 41: <empty>
Element 42: Smith
Element 43: Jones
Element 44: Rhys
Element 45: <empty>

Now we delete Jones and mark his
element as empty:

Element 41: <empty>
Element 42: Smith
Element 43: <empty>
Element 44: Rhys
Element 45: <empty>

Now try and find Rhys. Rhys
hashes to 42. Get element 42: it’s
Smith, so reject it and move to ele-
ment 43. It’s empty and so we con-
clude that Rhys is not in the table.
What happened here is that we
broke the linear probe chain that
led to Rhys. If we delete a string
from the list we cannot mark its
element as empty, we must instead
mark it as ‘deleted’: it may be that
that element is forming part of a
linear probe chain that we don’t
know anything about. Let’s do the
same experiment of deleting Jones
again and this time we mark the
element as deleted.

Element 41: <empty>
Element 42: Smith
Element 43: <deleted>
Element 44: Rhys
Element 45: <empty>

Find Rhys again. Rhys hashes to
42. Get element 42: it’s Smith, so
reject it and move to element 43.
It’s marked as deleted, so reject it
and move onto element 44. It’s
Rhys and we’re done.

Using this scheme, insertion
becomes a little more compli-
cated. Let’s reinsert Jones into the
table. It hashes to 42, get element
42. This is for Smith so reject it. Get
element 43. It’s deleted and so we
could reuse it. But, we have not yet
shown that Jones is definitely not
in the table: Jones could be some-
where else along the chain we’re
tracing. So, we need to follow the
linear probe chain until we get to
an empty element without finding
Jones. Once we do that we are
allowed to insert Jones into the
deleted element. So get element 44
(Rhys) reject, get element 45
(empty): Jones is not present,
hence we can reuse the deleted
element. It must be noted that we
could use the empty element at
number 45 instead of the deleted
element at 43, but remember we
always need to keep our linear
probe chains as small as we can.

On the disk, you’ll find a hash
table class (ThtHashTableLinear in
HASHTBL1.PAS) that uses linear
probing to resolve collisions.
There are methods to insert,
delete and find a string, and to

empty the table. Included is a
debug print routine that enables
you to investigate the different
problems you’ll encounter since it
shows a list of the items in the
table and also prints out the effi-
ciency of the table as an average
seek path value. There’s a small
example program that puts the
hash table through its paces.

You Gotta Say
Yes To Another Excess
Next time, we’ll move onto other
collision resolution methods for
hash tables and work our way
towards developing a hash table
on disk as a very fast index to a set
of records. We’ll also be looking at
how to enlarge a hash table, the
so-called dynamic hash tables. If
you do have any queries about this
article or subsequent ones (or,
horror of horrors, I’m wrong some-
where), please email me.

Until then, Pinball Cha Cha!

Julian Bucknall works for Turbo-
Power Software. In between that
and home, he spends too much
time listening to CDs in his car
(which isn’t yello). He can be
reached by e-mail at julianb@tur-
bopower.com or on CompuServe
at 100116,1572. The code that ac-
companies this article is freeware
and can be used as is in your own
applications.
Copyright © 1998 Julian M Bucknall

Looking for
the latest
software

development
news?

Visit the News
section of the

Developers Review
website at

www.itecuk.com

	On Track
	Blender? Oh Yeah
	Hawaiian Chance
	Crash Dance
	How How
	Bananas To The Beat
	You Gotta Say Yes To Another Excess

